Promoting Cold-Start Items in Recommender Systems
نویسندگان
چکیده
منابع مشابه
Promoting Cold-Start Items in Recommender Systems
As one of the major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clea...
متن کاملDropoutNet: Addressing Cold Start in Recommender Systems
Latent models have become the default choice for recommender systems due to their performance and scalability. However, research in this area has primarily focused on modeling user-item interactions, and few latent models have been developed for cold start. Deep learning has recently achieved remarkable success showing excellent results for diverse input types. Inspired by these results we prop...
متن کاملAddressing the cold start problem in tag-based recommender systems
Folksonomies have become a powerful tool to describe, discover, search, and navigate online resources (e.g., pictures, videos, blogs) on the Social Web. Unlike taxonomies and ontologies, which impose a hierarchical categorisation on content, folksonomies directly allow end users to freely create and choose the categories (in this case, tags) that best describe a piece of information. However, t...
متن کاملThe Continuous Cold-start Problem in e-Commerce Recommender Systems
Many e-commerce websites use recommender systems to recommend items to users. When a user or item is new, the system may fail because not enough information is available on this user or item. Various solutions to this ‘cold-start problem’ have been proposed in the literature. However, many real-life e-commerce applications suffer from an aggravated, recurring version of cold-start even for know...
متن کاملTrustRank: a Cold-Start tolerant recommender system
The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. Userand item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0113457